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ABSTRACT

When developing numerical methods, or applying themto the simulation and design of
engineering components, it inevitably becomes necessary to examine the scaling of the method
with a problcm’s electrical size. The scaling results from the original mathematical development- --
for example, a dense system of equations in the solution of integral equations-as well as the
specific numerical implementation. Scaling of the numerical implementation depends upon many
factors—for example, direct or iterative methods for solution of the linear system-—as well as the
computer architecture used in the simulation. In this paper, scalability will be divided into two
components; scalability of the numerical algorithm specifically on parallel computer systems, and
algorithm or sequential scalabilit y. The sequential implementation and scaling isinitial presented
with the parallel implementation following. This progression is meant to illustrate the differences
in using current paralel platforms from sequential machines, and the resulting savings. Time to
solution (wall clock time)along with problem size arc the key parameters plotted or tabulated.
Sequential and parallel scalability of time harmonic surface integral equation forms and the finite
clement solution to the partial differential equations arc considered in detail.

The research described in this papetwas carried out at the Jet I'repulsion l.aboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration



I. INTRODUCTION

The application of advanced computer architecture and software to a broad range of
clectromagnetic problems has allowed more accurate simulations of clectrically larger and more
complex components and systems. Computational algorithms arc used in the design and analysis
of antenna components and arrays, waveguide components, semiconductor devices, and in the
prediction of radar scattering from aircraft, sea surface or vegetation, and atmospheric particles,
among many other applications. A scattering algorithm, for example, may b€ used in conjunction
with measured data to accurately reconstruct geophysical data. When used in design, the goal of a
numerical simulation isto limit the number of trial fabrication and measurement iterations needed.
The algorithms are used over a wide range of frequencies, materials and shapes, and can be
devel oped to be specific to a single geometry and application, or more generall y applied to a class
of problems. The algorithms are numerical solutions to a mathematical model developed in the
time or frequency domain, and can be based on the integral equation or partial differential equation
form of Maxwell’s equations. A survey of the many forms of mathematica modeling and
numerical solution can be found in {1, 2.]. The goal of this paper is to examine the scalability of
certain numerical solutions both generally as a sequential algorithm, and then specifically as parallel
algorithms using distributed memory computers.  Parallel computers continue to evolve,
surpassing traditional computer architectures in offering the largest memories and fastest
computationa rates to the user, and will continue to evolve for several more generations in the near
future[3].

This paper overviews solutions to Maxwell’s equations implicitly defined through systems
of linear equations. Sequential and parallel scalability of time harmonic surface integral equation
forms and the finite element solution to the partial differential equations are considered. More
general scalability of other sequential algorithms can be found in [4]. initialy in Section 2, a short
review of the scalability y of parallel computersispresented. in Sections 3 and 4 respectively,
specific implementations of the method of moments solution to integral equation modeling, and a

finite clement solution wilt be discussed. The scalability of sequential solutions and related




reduced memory methods will be considered followed by parallel scalability and computer
performance for these algorithms. The size of problems capable of being examined with current

computer architectures will be then be listed, with scalings tolarger size problems also presented.

2. SCALABILITY OF PARALLEL COMPUTERS

Paralel agorithm scalability is examined differently from sequential algorithm scalability, or
more precisely, scalability on shared memory (common address space) machines with no
inter-processor communication overhead. Since a parallel computer is an ensemble of processors
and memory linked by high performance communicant ion networks, calculations that were
performed on a single processor must be broken into pieces and spread over all processorsin usc.
At intermediate points in the calculation, data needed in the next stage of the calculation must be
communicated to other processors.

The central consideration in using a parallel computer is to decompose the discretized
problem among processors so that the storage and computationa load arc balanced, and the amount
of communication between processors is minimal [5,6].  When this is not handled properly,
efficiency is lower than 100%, where 100% is the machine performance when all processors arc
performing independent calculations and no time is used for communication. If the problem is
decomposed poorly, some processors will work while others stand idle, thereby lowering machine
efficiency. Similarly, if calculations are load balanced but processors must wait to communicate
data, the efficiency is lowered. Scalability and efficiency arc defined to quantify the parallel
performance of a machine. Scalability, also termed speedup, isthe ratio of time to complete

calculations sequentially on a single processor (o that on P processors

$= ey - (1)

The efficiency is then the ratio of scalability to the number of processors
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If an algorithm issues no communication calls, and there is no component of the calculation that is
scquential and therefore redundantly repeated at each processor, the scalability is equalto the
number of processors P and the efficiency is 100%. The scalability, as defined, must be further
clarified if it is to bc meaningful since the amountof storage, i.e., problem size, has not been
included in the definition. Two regimes can be considered--fixed problem size and fixed grain
size. The first, fixed problemsize, refersto a problem that is small enough to fit into onc or a
fow processors and is successivel y spread over alarger sized machine. The amount of data and
calculation in each processor will decrease and the amount of communication will increase. The
efficiency must therefore successively decrease, reaching a point where CPU time is
communication bound. The second, fixed grain size problems, refers to a problemsize that is
scaled to fill al the memory of the machinein use. The amount of data and calculation in each
processor will bc constant, and in general, much greater than the required amount of
communication. Efficiency will remain high as successively larger problems arc solved. Fixed
grain problems ideally exhibit scalability that is akecy motivator fOr parallel processing-
successively larger problems can be mapped onto successively larger machines without a loss of
efficiency.

When developing numerical methods, or applying them to the simulation and design of
engineering components, it inevitably becomes necessary to examine the scaling of the method
with aproblem’s electrical size. The scaling results from the original mathematical development-—
for example, a dense system of equations in the solution of integral equations—as well as the
specific numerical implementation.  Scaling of the numerical implementation depends upon many
factors- for example, direct or iterative methods for solution of the linear system- as well as the
computer architecture used in the simulation. in the rest of this paper, scalability will be divided
into two components; first, algorithmic scalability, and second, scalability of the numerical
alporithm specificaly on paraliel computer systems. Algorithmic scalabilty refersto the amount of
computer memory and time nceded to complete an accurate solution as a function of the electrical

size of the problem. Scalability on a parallel computer system refers to the ability of analgorithm



to achieve performance proportional tothe number of processors being used as outlined above.
The sequential implementation and scaling is initial presented with tile parallel implementation
following. This progression is meant to illustrate the differencesin using current parallel platforms
from sequential machines, and the resulting savings. Clearly, di fferent mathematical formulations
can lead to alternate numerical implementations and different scalings. The objective of any
numerical method is to provide an accurate simulation of the measurable quantities in an amount of
time that is useful for engineering design. With this objective, time to solution (wall clock time)

along with problem sizc arc the key parameters plotted or tabulated.

3. INTEGRAL EQUATION FORMULATIONS
The method of momentsisatraditional algorithm used for the solution of asurface integral

equation [7,8]. This technique can be applied to impenetrable and homogenous objects, objects
where an impedance boundary condition accurately models inhomogenous materials o1 coatings,
and those inhomogenous objects that allow the use of Green’s functions specific to the geometry.
A dense system of equations results from discretizing the surface basis functions in a piecewise
continuous set, with this system being solved in various ways. The components of method of
moment solutions that affect the algorithmic scalability arc the matrix fill, and solution. A system of
cquations

AX =B (3)
results from the method of moments, where A generaly is an non-symmetric complex-valued
square matrix, and B and X arc complex-valued rectangular matrices when multiple excitations
and solution vectors arc present. The solution of (3) is most conveniently found by an 1 .U
factorizat ion

A=1LU 4
where 1. and U arc lower and upper triangular factors of A.  The solution for X is computed by

successive forward and back substitutions to solve the triangular systems



LY: B, UX =-Y. (5)

Becausce the system in (3) in not generally positive definite, rows of A arc permuted in the
factorization, leading to a stable algorithm [9]. Table 1 isalisting of computer storage and time
scalings for a range of problem sizes when using standard 1.U decomposition factorization, and
forward and backward solution algorithms readily available [10]. The table is divided aong
columns into problem size, factorization and solution components. The first column fixes the
memory size of the machine being used; the nu mber of unknowns and surface area modcled
(assuming 200 unknowns/A?), based on this memory arc in the next columns. The factor and
solve times are based on the performance of three classes of machine, current high-end workstation
(O. 1 Gigaflops), current supercomputer (10 Gigaflops), and next generation computer (1000
Gigaflops). Similarly, the rows are divided into the top four which would typically correspond to
current generation workstations, and the lower four that correspond to supcrcomputer class
machines. Due to the nature of the dense matrix data structures [ 10] in the factorization algorithms,
this component of the calculation can be highly cfficient on general computers. A value of 80%
cfficiency of the peak machine performance is used for the time scali rigs. The backward and
forward solution algorithms though operate sequentially on triangular matrix systems, resulting in
reduced performance, and a 50% efficiency is used in these columns. ‘I’ his performance will

increase when many excitations (right-hand sides) arc involved in the calculation, resulting in

performance closer to peak.



‘1'able . Scaling of method of moments matrix factorization and solution atgor ithins.

TTPROBLEM SIZE

FACTOR SOLVE (1 excitation)
MEMORY || N JAREA| 01 | 10 | 1000 | Tod [TTi0 [ 1000
(Mbytes) ) k Gflops machine Wf@@?ﬂgg; ) w(?flops machine performance
“Ti28 | 2.800 L "] 122 meins| 0.12 mensd 0,001 ménsd 1.2% ssmss[107 sees | 10 scos
256 4,000 | 20 35.6 036 | 0004 | 255 | 25x107 [2.5x10"
512 5,600 28 97.6 10.98 0.010 5.01 5.0x107 [ 5.0x107
1024 8,000 40 284.4 2.84 0.028 10.21 0.10 | 0.001
78192 || 22,627 113 | | 107.3 his | 1.07 hrs | 0.017 hrs | 1.36 mins | 107 mins | 10” reins |
32,768 | 45254 [226 - 8.58 0.086 - 55x107 | 5.5x1®"°
131,072- | "90,509 |452 | : 68.65 0.687 - 022 | 0.002
524,288 | 181,019 | 905 X 5497 - - 0.009

‘The time for factorization, scaling as N*, can limit the time of the calculation for large

problems, even if the matrix can be assembled and stored. An alternative to direct factorization

methods is the usc of iterative solvers of the dense system [ 11,12]. These methods arc even more

useful if multiple right hand sides arc present, since the iterative solvers exploit information in

these vectors [11]. If the convergence rate can be controlled, and the number of iterations required

(o complete a solution arc limited, the solution time can be reduced as compared to the direct

factorization methods.

The direct limitation of integral equation methods though, is the memory needed to store the

dense matrix. I.arger problems can only be simulated by circumventing this bottiencck. One

approach to this problem isto use higher-c)rcicr parametric basis functions which reduce the

number of unknowns needed to model sections of the surface [ 13]. However, it is clear that the

growth in memory required for storage of the dense complex impedance matrix (N?), cannot be

overcome by only slightly reducing the size of N or by increasing the number of computer

processors applied to the problem.  Alternative methods arc then desirable.

One such method uscs special types of basis functions to produce a sparse impedance

matrix [14 ], reducing the storage from the N’ to oN where o is a constant independent of N. The

resulting sparse system can be solved using tile methods described in latter sections of this paper.

Other classes of methods for gene.l-atinp, and solving the impedance matrix while reducing stos age



are summarized in { 15], while another is the. fastmultipole method [ 16, 17]. This approach
decomposes the impedance matrix in a manner that also reduces the needed storage to aN. The

fast multipole method has been parallelized in [ 18], where it is suggested thatan Intel Paragon

system with 512 nodes each containing 32 Mbytes of memory could solve a problem with 250,000

basis functions.

3.a Scability on Parallel Computers

To specifically examine paralel stability, the electric-field integral equation model
developed in the PATCH code [ 19,20] is used. This code uses a triangularly faceted surface
model of the object being modeled, and builds a complex dense matrix system (identical to that
given in equation (3))

71=V (6)

where
Zi,j s TiOXMrffyg d j ) GO )
and i and j arc indices on the edges of the surface facets, G is the Green's function for an

unbounded homogeneous space, r and r’are arbitrary source and observation points, and { T,
T} arc current expansion and testing functions. The impedance matrix (Z) is factored by means of
an LU factorization, and for each vector V aforward and backward substitution is performed to
obtain 1, the unknown currents on the edges of the surface facets. It is then a simple matter to
compute radar cross section or other field quantities by a forward integral. The elements of the
PATCH code considered in the parallelization arc matrix fill, matrix factorization and solution of
one or many right hand sides, and the calculation of ficld quantities. The computation cost of these

three elements must be examined in relation to increasing problem size and increasing number of

processors in order to understand the scalability of the I’Al’C} 1 code.

3.a.i Matrix Equation Fill




Since the impedance matrix is a complex dense matrix of size N, where N isthe number of
edges used in the faceted surface of the object being modeled, the matrix has N*clements, and
filling this matrix scalesas N 2. Onc method for reducing the amount of time spent in this
operation when using a parallel computer is to spread the fixed number of elements to be computed
over a large number of processors. Since the amount of computation is theoretically fixed
(neglecting communication between processors), applying 1’ processors to this task should provide
atime reduct ion of P.However, the computations required by the PATCH code's basis functions
involve calculations performed at the center of each patch that contribute to the matrix elements
associated with the three current functions on the edges of that patch. The sequential PATCI | code
will loop over the surface patches and compute partial integrals for each of the three edges that
make up that patch. This algorithm is quite efficient in a sequential code, but is not as appropriate
for a parallel code where the three edges of both the source and testing patch (corresponding to the
row and column indices of the matrix) will not generally be located in the same processor. ‘The
parallel version of PATCH curiently only uses this calculation fOr those matrix elements that arc
local to the processor doing the computation introducing an inefficiency compared to a sequential
algorithm. Thisinefficiency is specific to the integration algorithm used, and can be removed, for
example, by communicating partial results computed in onc processor to the processors that need

them. This step has not been taken at this time in the parallel PATCH code, duc partialy to the
complexity it adds to the code.

3.a.ii Matrix Equation Factorization and Solution
When the impedance matrix is assembled, the solution is completed by al.U factorization,
scaling as M, and a forward and backward substitution used to solve for a given right hand side,

scaling as N*. The choice of the 1.U factorization algorithm determines the matrix decomposition

scheme used on the set of processors.

One style of decomposition that is suitable for usc with LLINPACK [21] factorization

routines IS to partition the. matrix




A= : (8)
A(n.-l)

where A, e C™*" and m,= N | P.ach submatrix A ; is then assigned to processor i, where P is

the number of processors. The LLINPACK method involves many BLLAS 1 (vector-vector)
operations [22], which perform at 25 to 70 MEFL.OPS on the Cray 13D (150 ME.OPS peak
performance.) These type operations perform poorly on the T3D and other hierarchical memory
computers because the amount of work that is performed on the data brought from memory to the
cache then to the processor is similar in size to the amount of that data.

Another type of decomposition isto assume that the physical processors, P, form alogical

two-dimensional p, X p, array, where i and j refer to the row and column index of the processor.

Then the simplest assignment of matrix clements to processors in ablock method is to partition the

matrix

A= e grqr— (9)
A - A

(p-10 77 e, -1)pe -1)

where A, e C™™ m;~N/p,, and n;~N/p. SubmatrixA; is then assigned to processor
P,. This is an appropriate decomposition for usc with 1.LAPACK routines [10] that usc BLLAS3
(matrix-matrix) operations [23] and can perform at a high rate, typicaly 100 to 120 MFL.OPS on a
T3 processor. These operations perform a large amount of work on the data that has been
brought into the cache, compared with B1.AS 1 operations. However, this simple decomposition
doesn’t provide good load balance. It can be overcome by blocking the matrix into much smaller

k x k submatrices, and wrapping these in two dimensions onto the logical processor array. In

other words, partition




o (lo)

(M-1)(M-1)

where M =N /K, and all blocks arc of sizc k k. Then block A, is assigned to processor

LI 1]

@ e imedpy- THISIiS the partitioning strategy that is used by PATCH. (On the T3D, k =32 has
been found to provide optimal results between load balance demanding the smallest possible & and
the performance of the BLAS 3 operations requiring a large value for k.).

The PATCH code uses a matrix equation solver-narnti BSOLVE [24]---bascd on this
deeomposition . Figure 1 show the total and per processor performance for BSOI.VE for the
largest matrix that can be solved on each size of machine. Total time scales at the same efficiency

astotal performance, and is 25 minutes for the 30,240 size matrix on 256 processors.
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PERFORMANCE OF MATRIX SOLUTION ALGORITHM
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Figure 1. Performance for B SOLVE (includes factoring matrix, estimating

condition number, and solving for one right hand side.)

Each processor of the T3D (60 Mbytes usable memory) can hold in memory amatrix piece
of size 1890x 1890. The largest T3 has 1024 processors and can store a matrix of size 60,480 x
60,480 and can be factored in about 100 minutes. Problems in this class (those that are limited
only by memory requirements and not by run-time requirements) arc good candidates for out-of-
corc methods. A larger matrix equation is stored on disk, and portions of the matrix arc loaded
into memory and factored. For an out-of-core solution to be cfficient, the work involved in
loading part of a problem from disk must be overlapped with the work performed in solving the
problem, so that storing the matrix on disk doesn’t significantly increase the run time over what it

would be on a machine with more memory. Specialized matrix cquation solvers have been
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TIME FOR LU FACTORIZATION
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Figure 2. CPU time vs. number of unknowns for 64 bit complex dense direct
solvers with partial pivoting for various machines (Cray T3D, T90 and C90;
Intel Paragon and Delta). Processing elements (PEs) used in calculation shown

for parallel computers. o-core and out-of-core (OOC) results specified.

developed to efficiently exploit the large disc memory available on many parallel machines. Figure

2 shows general results for dense solvers, both in core and out of core, for various machines.

3.a.iii  Computation of observable

I-he observables of the PATCH code, such as radar cross section information or near or far
ficld quantities, can be easily computed once the currents on the edges of the surface patches are

known. These calculations involve forward integrals of the currents and the frecspace Green's
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function. Due to the discretized of this current, this integration results in a summation of ficld
components duc to each current basis function. Since these currents arc distributed ove,all the
processors in a parallel simulation, partial sums can be performed on the individual processors,
followed by a global summation of these partial results to find the total sum. This calculation scale

quite well since the only overhead is the single globa sum.

3.a.iv Total Performance

Figure 3 shows overall code timings for a scaled size problem. Each case involves a matrix
that fills the same fraction of each processor's memory. As the problem size increases, more

processors are used in the calculation. It is clear that the matrix fill is dominant in the code, and in

PATCH SCALING FOR SCALED SIZE PROBLEMS
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Figure 3. Scalability for I’ Al’Cl | code for scaled size problems.
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fact, the crossover point between the O(%) factorization and the O(n%) fill has not been reached,
Also, the time involved in the radar cross section calculation is shownto decrease as the number of
processors is increased, as was described in the previous paragraph. 1t may also be observed that
the matrix solvetime, also O(n?), parallels thefill lime quite well.

Figure 4 shows scalings for the fixed size problems on the T3D.}ach of the problems
shown is run on the smallest set of processors needed to hold the matrix data, and then on larger
numbers. The total code time initially decreases linearly with the number of processors, leveling

off as the amount of communication time begins to become a larger fraction of the total time needed

to complete the calculations.

PATCH SCALING FOR FIXED SIZE PROBLEMS

Cray 13D
30 — T . —_
-4 . "’“1 [ |
. —l— 3042 —e— 12168
25.| -@— 5832 -{J4— 16200 _ — — — .
. \ T
1 —hk— 8712

: .
\ N

-

N
<

| S S S

/
/

So'ution Time (min)
|_\
(6]

)

3 5 e
> ﬁ‘\# —
0 ¥ 1 L I T T Al | - - - - T 1 T

0 64 128 192 256

Number of Processors

1<igure 4. Scalability y for PATCI1 code for fixed size problems. The 16,200 unknown

case was only run on 256 processors.
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4. FINITE ELEMENT FORMULATIONS

Volumetric modeling by (he usc of an integral equation can also be used in simulations,
though the available memory of current or planned technolog y greatl y limits the size of problenis
that can be modeled. Because of (his limitation in modeling t}Ircc-dimensional space by integral
equations, finite element solutions of the partia differential equations that lead to sparse systems of
equat ions arc common] y used [25]. A finite element model is natural when the problem contains
inhomogenous material regions that surface integral cquation methods arc either incapable of
modeling, or arc very costly to model. The problem domain is broken into a finite element basis
function set used to discretize the fields. The resulting linear system of equations—rather than
scaling as the N? storage of the method of moments--scalcs as mN where m is the average number
of non-zero matrix equation elements pcr row of the sparse 1 inear system. This value is dependent
upon the order of the finite element used, but is typically between 10 and 100, and is independent
of the size of the mesh. Yor a 6 unknown, vector edge-based tetrahedral finite clement [26], m is
typicaly 16.

Typicall y, the s ystem of cquat ions resulting, from a finite clement discretizat ion is
symmetric; the non-zero structure of a representative example is shown in Figure 5 (Ieft). A
symmetric factorization of this system (Cholesky factorization) leads to [27]

A =LDL"=LD"D" 1 =117 (11)
where the diagonal matrix is specifically shown distributed symmetrically between the symmetric
factors I., an important consideration when symmetrically applying an incomplete Cholesky
preconditioner in iterative methods. The factorization results in non-zero clements in L where non-
zeros exist in A, as well asfill-in, or ncw non-zero entries generated during the factorization. Fill-
in requires additional storage for 1., as well as additional time to complete the factorization. To
reduce the amount of fill-in, the system is reordered by applying a permutation
(PAPYPX - PB (12)
where the permutation matrix P satisfies PP'= 1. In ( 12), PAP" icmains symmetric, and the

forward and backward substitution phases become
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LY = PB,I'Z= Y, X=P"Z (13)

where I, is the Cholesky factor of I’AlI'". For asparse factorization, the permutation matrix is
chosen to minimize the amount of fill-in generated.  Since there arc n! possibilities for P to
minimize fill-in, heuristic methods arc used to achieve a practical minimization, the most common
being the minimum degree algorithm [28]. Figure 5 (right) shows the non-zero structure of the
representative System after reordering for a canonical scattering problem.

“1'able 2 lists scaling data for problem size when using a Cholesky factorization with the
minimum degree reordering algorithm used to minimize storage. Based on the computer storage

available, the number of edges in a edge-based tetrahedral mesh [18] along with the number of

non-zeros in the factor L [29], and the volume that can be modeled is shown. The volume is
based on the usc of 15,000 tetrahedra per cubic wavelength, corresponding to approximately 25
cdges per linear wavelength. ‘I’his number can vary depending on the physical geometry
(curvature, edges, points) and the local nature of the fields.

Theoretically, the system in (12) general] y is not positive definite, being symmetric
indefinite, and a Cholesky factorization in this case is numecrically unstable. For the practical

solution of most problems, this has not been found to be a issue. Methods that preserve the

L
L fs:‘l\d

b A A

Figure 5. Non-zero matrix structure of typical finite element simulation. 1.eft, original structure;

right, structure after reordering to minimize bandwidth.
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symimetric sparsity, and allow pivoting to produce mom stable algorithms can be used [28].

‘]’able 2. Scaling of typical factorization finite element matrix solution agorithms,

[T PROBLEM SIZE
MEMORY N |f;| VOL
(Mbytes) 10° 10° (A%

128 30 8 2.0

[ 256 50 16 | 3.3

512 82 32 | 65
7024 | 135 64 | 9.0
8,192 600 512 | 40
32,768 || 1,627 | 2,048 108
131,072 || 4,410 | 8,192 [2204

From ‘I’able 2 it is seen that even though the storage for the finite element method is linear
in N, the fill-in duc to the usc of factorization algorithms causes the storage to grow as N'-“.
1 .incar storage can be maintained using an iterative solution. Sparse iterative algorithms for
systems resulting from electromagnetic simulations recursively construct Krylov subspace basis
vectors that arc used to iteratively improve the solution to the linear system. The iterates are found
from minimizing a norm of the residual

r=Ax-b (14)

at each step of the algorithm. (A single solution vector for a single excitation is shown.) Since the
system is complex-valued indefinite, methods appropriate for this class of system such as bi-
conjugate gradient, generalized minimal residual, and the quasi-minimal residual algorithm are
applied [30]. They all require a matrix-vector multiply, and a set of vector inner products for the
calculation. The iterative algorithuns require the storage of the matrix and a fcw vectors of length
N. When only the matrix and a fcw vectors need to be stored, problems of very large size can be
handled, if the convergence rateis control] cd. The number of iterations (with a sparse matrix-
dense vector multiply accounting for over 90% of the time at each step of the iterative algorithm)

determines the time to solution.
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Because the matrix-vector multiply dominates the Kiylov iterative methods, the agorithmic
scaling is found from this operation. A single. sparse matrix-dense vector multiply requires mN
operations, and if there arc / total iterations required for convergence, the number of floating point
operations nceded is/* mN . A typical solution of the system of equations, without the application

of apreconditioner, may require a number of iterations I = N, producing the squential algorithm

scaling

mN”? (15)

for the solution of asingle right-hand-side. The algorithmic scaling for a direct factorization
method is O(m’N) [28, page 104]; therefore the factorization methods—when memory is sufficient
to hold the fill-in entries---give considerable CPU time savings in the solution. Further advantage
isalso gained over iterative methods when using a direct factorization. Modern computer
architectures arc typically much less efficient at performing the sparse operations required in the
Sparse matrix-dense vector mutiply of the iterative algorithm, as compared to operations on dense
matrix systems. Current direct factorization methods attempt to usc block algorithms, exploiting
dense matrix sub-structure in the sparse system, and therefore increasing the performance of the
factorization, further improving the performance from that given by the algorithmic scaling
differences.

It is seen that the number of iterations dircctly increases the time to solution in the iterative
methods. This number can be controlled to some degree by the usc of preconditioning methods
that attempt to transform the matrix equation into onc with more favorable properties for an iterative
solution. To control the convergence rate, the matrix A should be scaled by a diagonal matrix that
produces ones along the diagonal. This scaling removes the dependence on different element sizes
in amesh. A preconditioner M can then be symmetrically applied to transform the system giving

M7AM ' (Mx)=M"h. (16)
The right hand side vector is initidly transformed, and the system is then solved for the

intermediate vector X = Mx, multiplying this vector by M, A and M in succession at each
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iterative step. When the solution has converged, x iS recovered from Xx. The closer M isto 1, in
(4), the quicker the transformed system will converge to asolution. A common preconditioner iS
an incomplete Cholesky factorization [31] where M is chosen as a picce of the factor 1. in (11). 1t
is computed to keep some fraction of the true factorization clements, the exact number and sparsity
location of the clement dependent on the exact algorithm used. A useful form of incomplete
factorization kecps the same number of clements in the incomplete factor as there arc in A. This
requires three times the number of operat ions at each iterative step; therefore the time to solution
will be decreased if the number of iterations is lesser than one-third when applying this
preconditioner.

When the right hand side consists of a number of vectors, newly developed block methods

can be applied to the system to usc the additional right hand sides to improve the convergence rate
[32,33].

4.a Scalability on Parallel Computers

In a finite clement algorithm, the resultant sparse system of equations is stored within a data
structure that holds only the non-zero entries of the sparse system. This sparse system must
ultimately be distributed over the parallel computer, requiring special algorithms to either break the

original finite clement mesh up into specially formed contiguous pieces, or by distributing up the

matrix entries themselves onto the processors of the computer. As in the dense method of

moments solution, the pieces arc distributed in a manner that allows for an efficient solution of the

matrix equation system.
4.a.i The Finite Element Mesh and the Sparse Matrix Equation

The volumetric region (V) is enclosed by a surface ( dV), in which a finite element

discretization of aweak form of the wave equation is used to model the geometry and fields
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Mo J”[ (VxI)e (VxW')~-k2/1,7i-W'"lylv» J ExneW'ds=0 . (17)
: o

1 isthe magnetic ficld (the H -equation is used in this paper; a dual £ -equation can also be
written), W is a testing function, the asterisk denotes conjugation, and E x #iisthe tangential
component of I on the bounding surface. In (17), ¢, and y, arc the relative permittivity and
permeability, respectively, and k, and 1), are free-space wave number anti impedance, respectively.
A set of finite clement basis functions, the tetrahedral, vector edge elements (Whitney clements)
will be used to discretize (17),
W, (r)= 2 (NVA,(r)- Ivan, (18)

where A(r) arc the tetrahedral shape functions and indices (m, n) refer to the two nodal points of
each edge of the finite element mesh. These elements will be used for both expansion and testing
(Galerkin's method) in the finite element domain. Because of the local nature of ('17), (sub-domain
basis functions and no Green's function involved in the integration of the fields), the system of
equations resulting from the integration only contains non-zero entries when the finite elements

overlap, or arc contiguous at an edge. Because the mesh is unstructured, containing elements of
different size and orientation conforming to the geometry, the resultant matrix equation will have a
sparsity structure that is also unstructured.

The sparsity structure is further altered by the form of the Sommerfeld boundary condition
applied on the surface S. When local, s ymmetric absorbing conditions are applied on the boundary
[34]-- entering into the calculation through the surface. integral in(17)- a matrix with the structure
shown in Figure 5 (left) results. It is seen that the diagonal is entirely filled, corresponding to the
self-terms in the volume integral in (17), with the m non-zero entries scattered along the row (or
column) of the symmetric matrix. The location of these entries is completely dependent upon the
ordering of the edges of the tetrahedral clements used in the discretization. If adifferent shape or
order of the elements arc used, the non-zero structure will differ dlightly from the one shown.

When an integral equation method is used to truncate he mesh [35,36], a densc block of elements
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will appear in the lower right of the system (when the edges of the finite clement mesh on the
boundary arc ordered last) as shown in Figure 6 (left). The integral cquation approach to
truncating the mesh uscs the finite clement facets on the boundary as source fields in an integral
equation, resulting in a formulation for this piece of the calculation similar to that in Section 3, and
with an amount of storage needed for the dense matrix as a function of the electrical surface area
tabulated in Section 2.  To circumvent the large dense storage needed with this application of a
global boundary condition, a surface of revolution can be used to truncate the mesh [37,38], using
a set of global basis functions to discretize the integral equation on this surface. This resultsin a
system similar to that in Fig 6 (right) containing very small diagonal blocks due to the orthogonal
global basis functions along tbc surface of revolution truncating the mesh, as well as a matrix
coupling the basis functions in the integral equation solution to the finite element basis function on
the surface. These coupling terms are the banded thin rectangular matrices symmetric about the
diagonal of the matrix. Other forms of the integral equation solution, as outlined in Section 3, can

also be used to discretize the integral equation modeling fields on the mesh boundary, leading to

dight variations of the matrix systems shown in Figure 6.
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Figure 6. Non-zcro matrix sparsity structure for system with dense surface
integral equation boundary condition applied (left), and surface of revolution

integral equation boundary condition (right). The mesh has 5,343 edges with
936 of those on the boundary.

The systems graphically represented in Figure (6) gencrall y have the form

K Ccym) [o
c 71| |v

where K is the sparse, symmetric finite clement matrix, found from the volume integra in ( 17), C
can be termed the coupling matrices that arc interactions between the finite elements at the boundary
and the integral equation basis functions, and Z represents the integral equation, method of
moments matrix entries. The symbol 1 indicates the adjoint of a matrix. H is the vector of
magnetic field coefficients for each finite element, and | represents the equivalent current basis
functions on the boundary of the mesh. For a scattering problem formulation, the incident field
couples only to the integral equation boundary, and is represented as V. Yor radiation problems
the O and V vectors arc interchanged since the impressed source is modeled in the mesh. 1 Jiffering
formulations lead to variationsin (19), but the general algebraic nature is preserved. To exploit the
sparsity of K in (' 19), the system is solved in two steps by initially substituting I = - K'CI from
the first equation in (19) into the second, producing

Z-C'K'Ol:= V. (20)
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This system has a size on the order of the number of basis functions in the integral equation model,
isdense, and can be solved by either direct factorization or iterative means as outlined in Section 3.
The intermediate calculation, KX == C is the sparse system of equations to be solved, producing
X.

The solution of this sparse system on a parallel computer requires it to be distributed.
Traditionally, the dependence between mesh data and the resultant sparse matrix data
is exploited in the development of mesh partitioning algorithms [39-42,55]. These algorithms
break the physical mesh or its graph into contiguous pieces that arc then read into each processor of
adistributed memory machine. The mesh pieces arc generated to have roughly the same number of
finite clements, and to some measure, each picce has minimal surface area. Since the matrix
assembly routine (the volume integral in (17)) generates non-zero matrix entries that correspond to
the direct interconnection of finite elements, the mesh partitioning algorithm attempts to create a
load balance of the sparse system of equations. Processor communications in the algorithm that
solves the sparse system is limited by the abi 1 it y to minimize the surface area of each mesh picce.

Mesh partitioning algorithms arc generally divided into multilevel spectral partitioning,
geometric partitioning, and multilevel graph partitioning. Spectral partitioning methods [40,4 1]
creates eigenvectors associated with the sparse matrix, and uscs this information to recursively
break the mesh into roughly equal pieces. It requiresthe mesh connectivity information as input,
and returns lists of finite clements for each processor. Geometric partitioning [39] is an intuitive
procedure that divides the finite clement mesh into pieces based on the geometric (node x, vy, z
coordinates) of the finite clement mesh. This algorithm requires the mesh connectivity as well as
the node spatial coordinates and returns lists of finite elements for each processor.  Graph
partitioning [42] operates on the graph of the finite element mesh (mesh connectivity information)
to collapse (or coarsen) vertices and edges into a smaller graph. This smaller graph is partitioned
into picces, and then uncoarsened and refined for the final partitions of finite elements for the
parallel processors. The input and output is identical to spectral methods. Multilevel algorithms

operate by performing multiple stages of the partitioning simultancously, accelerating the
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algorithm. Most of the algorithms and their offshoots perfori similarly in practice, with the

spectral and graph partitioning algorithms being simpler to use since they do not need geometry
information.  An alternative to these mesh partitioning algorithms is a method that divides the
matrix entries directly, without operating on the finite element mesh, and will be examined in
Section 4.a. iv.

Different decompositions arc used depending whether direct factorization or iterative
methods arc used in the solution. Decompositions for iterative solutions, as well as the iterative

methods themselves have shown greater case in parallelization than direct factorization methods.

Both approaches will now be considered.

4.a.ii Direct Sparse Factorization Methods

Direct factorization methods require a sequence of four steps; reordering of the sparse

system to minimize fill-in, a symbolic factorization stage to determine the structure and storage of

I. in (13), the numeric factorization producing the complex-valued entries of 1., and the triangular
forward and backward solutions. The fundamental difficulty in the parallel sparse factorization is
the development of an efficient reordering algorithm that minimizes the fill-in and will scale well
on distributed memory machines, controlling the amount of communication necessary in the
computation. The minimum degree algorithm typically used in sequential packages is inherently
non-parallel, proceeding sequentially in the elimination of nodes in the graph representing the non-
zero structure of the matrix. Other algorithms for reordering, as well asthe following symbolic
and numeric factorization steps that depend on this ordering arc under study [43]. Current
factorization algorithms [44,45,46] can exhibit fast parallel solution times on moderately large
sized problems, but arc dependent on the relative structure of the mesh, whether or not the problem
is two or three-dimensional, and the relative sparsity of the non-zero entries. For problems with

more structure and less sparsity, higher performance is found by these sparse factorization solvers.
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4.a.ili Sparse Iterative Solution Methods

1 ‘or a parallel implementation of the sparse iterative solvers introduced above, a
decomposition of the matrix onto the processors that mninimize communication of the overlapping
vector picees in the parallel matrix-vector multiply of the iterative algorithm, reduces storage of the
resultant dense vector pieces on each processor, and allows for load balance in storage and
computation is required. Various parallel packages have been written that accomplish these goals
to some degrec [47,48]. The mesh decompositions outlined previously can be used and integrated
with the paralel iterative algorithm to solve the system.

Ah-natively, arelatively simple approach that divides the sparse matrix entries among the
distributed memory processors ean be employed [49]. The matrix is decomposed in this
implementation into row slabs of the sparse reordered system. The reordering is chosen to
minimize and equalize the bandwidth of each row over the system [ 17,18] (as shown in Fig .5
right) since the amount of data communicated in the matrix-vector multiply will depend upon the
combination of equalizing the row bandwidth as well as minimizing it. A row slab matrix
decomposition strikes a balance between near perfect data and computational load balance among
the processors, minimal but not perfectly optimal communication of data in the matrix-vector
multiply operation, and scalability of simulating larger sized problems on greater numbers of
processors. Since the right-hand-side vectors in the parallel sparse matrix equation ( KX =C) are
the columns of C, these columns are distributed as required by the row distribution of K. When
setting up the row slab decomposition, K is split by attempting to equalize the number of non-
zeros in each processor’s portion of K (composed of consecutive rows of K). The rows in a
given processors portion of K determines the rows of C that processor will contain. As an
example, if the total number of non-zeros in K isnz, aloop over the rows of K will be executed,
counting the number of non-zeros of K in the rows examined. When this number becomes
approximately nz 7 P (where » is the numbe1 of processors that will be used by the matrix

cquation solver), the set of rows of K for a given processor has been determined, as has the set of

towsof C.

26




The matrix decomposition code used in this example consists of a number of subroutines;
initially, the potentially large mesh files arc read (READ), then the connectivity structure of the
sparse matrix is generated and reordered (CONNECT), followed by the generation of the complex-
valued entries of K (FEM), building the connectivity structure and filling the C matrix
(COUPLING). Finally the individual files containing the row slabs of K and the row slabs of C
must be written to disk (WRITE). Ior each processor that will beused in the matrix equation
solver, one file containing the appropriate parts of both the K and C matrices is written. Figure 7
shows the performance of these routines over varying numbers of processors for a problem
simulating scattering from a dielectric cylinder modeled by 43,791 edges. The parallel timeson a
Cray T3D arc compared against the code running sequentially on one processor of a 190. As
mentioned above, the reordering agorithm and the algorithm generating the matrix connectivity arc
fundamentally sequential. These routines do not show high efficiency when using multiple
processors-the time for this algorithm is basically flat--whereas for routines that can be
parallelized (F1EM, COUPLING and WRITE), doubling the number of processors reduces the
amount of time by a factor of approximately two. The time for reading the mesh is bound by 1/O
rates of the computer, and the time for writing the decomposed matrix data varies slightly for the
128 and 256 processor cases due to other users also doing I/O on the system. Aswill be shown in
the next result, akcy point of this approach to matrix’ decomposition is that the total time needed
(less than 100 sec. on 8 processors) is substantially less than the time needed for solving the linear

system, and any inefficiencies here are less important than those in the iterative solver.
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SCALING OF SPARSE SLICE ALGORITHM
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1 ‘igure 7. Computation time and scaling for a relatively small simulation
(dielectric cylinder with 43,791 edges, radius =1 cm, height =10 cm,
permittivity = 4.0 at 5.0 GHz). First column shows time for single
processor 1T90. Times on 190 for CONNECT and FEM have been

combined.

In this example, quasi-minimum residual algorithm [52] is used to solve the sparse system
of equations KX = C. With the row slab decomposition used, the machine is logically considered
to bc alinear array of processors, with each slab of data residing in one of the processors. Central
components of the quasi-minimum residual algorithm that arc affected by the usc of a distributed
memory machine arc the parallel sparse matrix- dense vector multiply, and dot products and norin
calculations that need vector data distributed over the machine. The dominant component is the
matrix- vector multiply, accounting for approximately 80% of the time required in a solution. The

paralel sparse matrix-dense vector multiply involves multiplying the K matrix that is distributed
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Figure 8. Local sparse ma(rix-dense vector multiply graphicaly displayed.

across the processors in row slabs, each containing a roughly equal number of non-zero elements,
and a dense vector X, that is aso distributed over the processors, to form a product vector vy,
distributed asis x (Figure 8). Since the K matrix has been reordered for minimum bandwidth, the
minimum and maximum column indices of the slab arc known. If the piece of the dense vector x
local to this processor has indices within this extent of column indices, the multiply may be dcmc
locally and the resultant vector y will be purely local. In general, the local row indices of the dense
vector x do not contain the range of column indices; therefore acommunication step is required to
obtain the portions of the multiply vector x required by the column indices of the K matrix, This
communication step only requires data from a fcw processors to the left and right. The exact
number of processors communicating data is dcpendent on the row bandwidth of the loca piece of
K, and the number of processors being used. In the simulations considered, the number of
processors communicating data is typically onc or two in each direction on scaled problems.
Shown in Figure 9 arc plots of time to convergence on different numbers of processors for
five different problems (fixed size problems). The number of unknownsin the finite element mesh
and the number of columns of C, arc indicated on the plots. The quasi-minimum residual

algorithm was stopped when the normalized residual was reduced three orders of magnitude for

each column of C. With an initial guess being the zero vector, thisresultsin a normalized residual
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Solution Time (min)

of 0.1 %, a value that is sufficient for this scattering problem.
percentage and a fixed rate for local work, doubling the number of processors for a given problem
would halve the total solution time. The curves in Figure 9 do not drop linearly at this rate for

increasing numbers of processors, because there is a decrease in the amount of work per processor
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Time of convergence for five different problems. The time

shown is the total execution time for the solver on different numbers of

processors. The C matrix had 116 columns in each case.

Given a fixed communication

while the amount of data communicated increases, causing tbc curves to level off.

communication. This is related to the number of processors to the left and right that each processor

must communicate.

processors Will generate a growing amount of communication. The amount of communication is a

Another factor in the performance of the parallel matrix-vector multiply isthe percentage of

It is clear that running a fixed size problem on an increasing number of
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function of how finely the K matrix is decomposed, since its maximum row bandwidth after
reordering is not a function of the number of processors used in the decomposition. If the
maximum row bandwidth is m and each processor in a given d~.opposition has approximately m
rows of K, then most processors wi 1l require one processor in each direction for communication
If the number of processors used for the distribution of K is doubled, each processor will have.
approximatel y m/2 rows of K. Since the row bandwidth doesn’ t change, each processor will now
require communication in each direction from two processors. But since the number of floating
point operations required hasn’t changed, the communication percentage should roughly double.

This can be seen in Figure 10, which shows communication percentage versus number of

processors, for four problem sizes.
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Figure 10. Percentage of com munication versus humber of processors for parallel

matrix vector multiply, for four different size (number of edges) meshes of

dielectric cylinder.

The row slab decomposition IS @ sSimple means for breaking the sparse matrix equation
among the processors and while the mesh decomposition algorithms outlined above can also be
used, differences between the approaches in time to solution on a parallel computer were found to
be small for either approach. Two alternative mesh decomposition schemes have been compared to
the matrix partitioning algorithm, contrasting data load balance, communication load balance, the

total amount of communication and the performance of the local processor matrix-vector

performance resulting from the specific decomposition used. . .
The first is an algorithm termed

JOSTI.E [S5] tha( uses various optimization methods to cqualize the mesh partitions among the

processors. The second is a multi-level graph partitioning scheme termed METIS [42]. Among
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the three approaches, no discernable difference was found in data and communication load balance,
and in the performance of the local processor matri X- vector performance. A difference was found
in the total amount of communciation nceded in the solution of the sparse system of equat ions.
When normalizing the total amount of communication in the matrix partition algorithm to 1.0, the
JOSTIE algorithm reduced the communication overhead to 0.26, and the METIS algorithm
reduced it to 0.22. From Figure 10, it is noted that the pcreentage of communication time in the
complete solver is 8% for scaled-sized problems (those that fit into the minimal number of
processors needed to solve the problem). It is this fraction of the total CPU time that can be
reduced by the 0.26 and 0.22 fractions found using the mesh decomposition algorithms; i .c. the
total time to solve the system would be reduced by just over 6% using the METIS agorithm for
mesh decomposition. It was found that the METIS and JOSTLE algorithms did produce less
communication overhead as the fixed size problem was solved on larger numbers of processors,
thereby further reducing total exection time. This savings over the matrix partitioning method is
offset though, since the overall execution time decreases dramatically y as seen in Yigure 9 for a
fixed size problem.

Krylov subspace methods different from the quasi-minimum residual algorithm can be
coupled with a mesh or matrix decomposition method and used for sparse matrix solution. In [4'7]
the conjugate gradient squared and generalized minimum residual method arc used with geometric
partitioning algorithms and then compared. The Krylov iterative method implementations are
necessarily similar since the dominant component of the solver is the matrix-vector multiply.
Parallel speedup for fixed sized problems arc reported in [47] for the conjugate gradient squared
and the generalized minimum residual method. The speedups arc very similar to those shown in
Figure 9.

A possible means to substantially shorten the solution time in an iterative solution is the use
of an effective preconditioner. The usc of incomplete Cholesky preconditioners used in sequential
calculationsis difficult to implement in a distributed memory parallel environment due to the nced

for performing a forward and backward solution with each matrix multiply step in (16).Ona
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paralel machine, these arc essentially sequential operations that can give greatly reduced
performance [53]. A promising alternative is to calculate an approximation to the invers of the
system, rather than a factorization of the system as is done in the incomplete Cholesky
approximation. A sparse approximate inverse [54] produces a matrix with a controllable number
of non-zeros that approximates the inverse of K, and rather than calculating forward and backward
solutions, it multiplies K at each step of the iterative algorithm. The matrix-matrix multiply can be

achieved with much higher performance than the forward and backward solutions used in the

incomplete factorization.

S. DISCUSSION
This paper presented an overview of solutions to surface integral equation and volumetric
finite element methods on sequential and distributed memory computer architectures. Both the
sequential algorithmic scalability as well as scalabilty on parallel computer systems were presented
for current computer technology, with extrapolation to next generation technologies. A broad sct

of references arc given.  When a uniform resource locator (URL) is also referenced, it points to

software which is freely available.
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PERFORMANCE OF MATRIX SOLUTION ALGORITHM
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Figure 1. Performance for BSOLVE (includes factoring matrix, estimating condition

solving for one right hand side.)

-100

10

1

40

Total Performance (GFLOPS)

number,

and



CPU TIME (Hrs)

100

10

0.1

0.01

TIME FOR LU FACTORIZATION

64 Bit Complex Arithmetic, Partial Pivoting
®
512 pE’s 196 PEs
ooc Ooc
= 0oC
A
102 | PEs 6768PES
256 PEs I l
| 411692 PEs =
00C T3D
@ Paragon
A 190 (32 cPUs) |
® C90 (16 CPUs)
[ ] Delta
L] T T T T 1 Ll T L T T T { T R } ¥
40 60 80 100 1

UNKNOWNS (1000)

'0

Figure 2. CPU time vs. number of unknowns for 64 bit complex dense direct solvers with

partial pivoting for various machines (Cray T3D, T90 and C90; Intel Paragon and Delta).

processing elements (PEs) used in calculation shown for parallel computers. In-core and

out-of-core (OOC) results specified.
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PATCH SCALING FOR SCALED SIZE PROBLEMS
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Figure 3. Scalability for PATCH code for scaled size problems.
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PATCH SCALING FOR FIXED SIZE PROBLEMS
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Figurc 4. Scal ab|||ty for PATCH code for fixed size prObl ems. The 16.200 unknown case was

only run on 256 processors.
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Figure 5. Non-zero matrix structure of typical finite clement simulation. Left, original structure:

right, structure after reordering to minimize bandwidth.
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Figure 6. Non-zero matrix sparsity structure for system with dense surface integral equation
boundary condition applied (left), and surface of revolution integral equation boundary
condition (right). The mesh has 5,343 edges with 936 of those on the boundary.
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SCALING OF SPARSE SLICE ALGORITHM
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Figure 7. Computation time and scaling for arelatively small simulation (dielectric cylinder with
43,791 edges, radius= 1 cm, height== 10 cm, permittivity = 4.0 at 5.0 GHz). First column

shows time for single processor T90. Times on T90 for CONNECT and FEM have been
combined.
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Figure 8. Local sparse matrix-dense vector multiply graphically displayed.
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ITERATIVE SOL. UTION SCALING FOR FIXED SIZE PROBLEMS
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Figure 9. Time of convergence for five different problems. The time shown is the total execution

time for the solver on different numbers of processors. The C matrix had 116 columns in

each case.
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Figure 10. Percentage of communication versus Number of processors for parallel

matrix vector multiply, for four different size (number of edges) meshes of dielectric
cylinder.
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